SOLUTION OF EQUATION OF ADMIXTURE TRANSFER

IN A CYLINDRICAL CHANNEL WITH THE DEPENDENCE
OF DIFFUSION COEFFICIENT ON CONCENTRATION

AND GAS EXCHANGE WITH WALL TAKEN INTO ACCOUNT

A, E. Kalyusskii and S. P. Grekov UDC 533.73

A more accurate linearization method is presented of the two~dimensional equation for
convective—diffusive transfer. The solution of the transfer equation is obtained for a
variable diffusion coefficient which depends on concentration.

The equation of convective diffusion is analyzed to solve a number of problems either in hydro-
dynamics or chemical kinetics and to study chemotropic converters or mass transfer during osmosis,
as well as other cases.

In the case of a stationary flow of incompressible fluid in a cylindrical half-bounded channel the
equation for convective-diffusive mass transfer can be written as
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The solution of the equation is required under the following initial and boundary conditions:
clx, r, 0) =cy; ' (2)
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Equation (1) is nonlinear. Such equations are, as a rule, linearized by replacing the function D(c)

by some average value of it, D,y. Carrying out such linearization one obtains
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The assumption that the diffusion coefficient is constant with changing concentration is only valid
if the concentration varies slightly. Otherwise, errors which are difficult to estimate arise. By differen-
tiating (1), one obtains
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Thus, if one assumes that D(c) = Day, one sets by the same token the first and the fourth terms
of the above equation eqgual to 0.

An improved linearization of Eq. (1) is considered below, as well as the solving of the boundary -
value problem.
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The integral replacement is carried out:

o= { D(e)dec= (). (5)
Then () becomes
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Equation (6) is now linearized by setting D{c) = Dgy: '
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The initial and boundary conditions now become as follows:
v(x, r, O =p(c)=0v; v0, r, H=p[fE)=G{); 0t + oo;
2
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The proposed linearization takes into account to some extent the first and the third terms of Eq. (4).

The last boundary condition (8) is also nonlinear. We write it as

X L BD(E) (e — ) =O. (9)
or
One now sets
D(c)(c—¢y) = kv. (10)
Then by using (5) one has
du ]
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To linearize the condition (9) we proceed as follows. It is assumed, following [2, 4], that the diffu-
sion coefficient is a power of the concentration and is expressed by the formula

D =D, {c— co)1. (12)
Then by inserting (11) into (5), one obtains '
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By using (13), the condition (11) can be written as follows:
P | pec—eft =0 (14
or
or
du
—toa,v=0, (15)
ar T
where o = gk.
The nonlinear condition (8) has thus been replaced by the linear one (15).
To solve Eq. (7) under the conditions (8) and (15) one first introduces another function:
v =v—u,. (16)
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Introducing the replacements
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one brings the system {17)-(18) to the form
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The solution of Eq. (19) together with the conditions (20) was obtained by us in [1] as
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0
where 7 = tDav/r}.
By using the relation (13) between v and D, one finds the concentration distribution of the admixture.
Substituting (21) into (13), one finds
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The average over the radius concentration of the admixture is calculated for the equations ¢y = ¢; = 0; £(t)
=emn—amun%=001mwsm;k=mn=1;Dw;=QM5mHsm;x=&3m;%=0ﬁ5mvsm;3=aomm

The results of the calculations are shown in Fig, 1. The curves 1 and 2 for x = 0 or 3 m are found by
using a formula arrived at by averaging the expression (22) over the radius, and the curve 2' is found for
the same conditions but without linearization. It can be concluded from these curves that the proposed
linearization is within the ratio 1.2-1.5 as compared with usual linearization.

NOTATION
c is the admixture concentration, in fractions;
cq is the initial admixture concentration in the channel;
r,. X are the space coordinates, m;
t is the time coordinate, sec;
Ty is the channel radius, m;
D is the turbulent diffusion coefficient, m?/ sec;
Uy is the mean flow velocity across channel section, m /sec;
f(t) is the functien of concentration in the initial section, %;
B=A70;
A is the gas exchange per unit surface area, m®/ sec / mz;
o is the diffusion coefficient between flow and channel wall, m?/sec.
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